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Abstract. The hydrogen-ion molecule has been used as a
test system for the application of the Schrodinger—
Riccati formulation to molecular calculations. Some of
the points discussed are the characteristics (quasicon-
stancy of the local energies, size, number of points) of
the sampling region to be chosen, the dependence on the
starting function, the precision of the calculations, and
the excellent behaviour of the predicted function (by
comparison to an accurate function).
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1 Introduction

The Schrédinger—Riccati equation (SRE) represents [1] a
new approach within the framework of the local energy
method, reviewed in recent work [2], where details and
references may be found. The designation Schrédinger—
Riccati (SR) was adopted because the equation was
derived through the use of a Riccati equation. This
equation has been tested in the study of the one-
dimensional Schrédinger equation [2] and the ground
state of the hydrogen atom [3].

The SRE may be used, starting from an approximate
function, for the evaluation of improved local values of
both the function and the energy of any bound state of
the system under consideration. The improvement of the
function will not be the same at every point in the
electron configuration space (ECS) and, consequently,
the local values of the energy will vary. The constancy
of the local values of the energy will only be reached
when the improvement yields the exact value of the
function at each point.
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In order to overcome this difficulty, when aiming at a
prediction of an estimate of the energy of the system, it is
necessary to make recourse to the evaluation of a mean
value for a given sampling region. Such a procedure may
be considered to constitute an approximation to the
averaging carried out in a traditional quantum-
mechanical calculation when evaluating the energy
expectation value.

The hydrogen-ion molecule was chosen, because of
the availability of the exact energy values for a number
of bond lengths [4], in order to determine whether the
sampling procedure may yield a satisfactory estimate of
the electronic energy. The quality of the predicted
function will be judged by comparison with the accu-
rate function of Weinhold and Chinen [5]. (This accu-
rate function was chosen for its simplicity. References
to other studies of this system may be found in that
work.)

2 Theoretical background
Given the Schrodinger equation
(# —-E¥=(T+V-E¥=0, (1)

where # is the Hamiltonian operator (consisting of the
kinetic energy and potential-energy operators, 7 and V,
respectively) and W and E denote one of its eigenfunc-
tions and the corresponding eigenvalue, the associated
local SRE [1, 2] is
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V-E¥+> —~T"e" =0, (2)
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where the function ¢ represents the correction that must
be added to an approximate function ® in order to
generate an improved approximation to the correct
eigenfunction, ¥ = ®+ ¢. The quantities 7" are
defined by
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and their expressions are obtained by the chain rule,
with auxiliary differentiation with respect to one of the
parameters (usually the exponent of one of the basis
functions) in @.

The details of the derivation of the SRE may be
found in previous work [1, 2] and here we just summa-
rize the actual procedure for numerical calculations.

2.1 Determination of the correction function

The practical application of the SRE implies solving
Eq. (2), with a given input value of the energy (E;), at
points in the ECS, in order to determine the corre-
sponding local values of the correction function ¢. The
quantities 7" are obtained from the chosen starting
function, which can be any of the spatial components
(consisting of a single monomial term or of a linear
combination of monomial terms), associated with a
given spin component, of an approximate function.

In the calculations, the approximate value of ¢, ob-
tained from Eq. (2) truncated at n = 4, is then improved
through an iterative search procedure. Then, the energy
contribution of ¢ is evaluated and the local energy of the
system is obtained.

2.2 Evaluation of the local energy

In the present case, the value of the local energy at the
point under consideration is given by
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The derivatives of ¢, which are obtained by differenti-
ation of Eq. (2), are given by
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where 9 and 0° stand for the first and second derivatives
with respect to x, y, or z and
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n=2
D=(V—E)+B . (11)

The energy obtained in such a procedure will represent,
as a rule, an approximate local energy, being different
from the value used as the input energy. In this work
these local energies are evaluated to five significant
figures.

2.3 Evaluation of a mean value of the energy

An extended calculation for a chosen sampling region
will allow us to obtain a statistical estimate of the mean
energy of the system under consideration.

The result will depend on the sampling region and,
therefore, a search for the most appropriate region must
be carried out. The region to be chosen, when using a
given input energy, will be the one for which acceptable
values are obtained for both the confidence interval for
the calculated mean energy and the error of the latter
with respect to the input energy.

All the energies are given in hartree throughout the
text.

3 Numerical results

The starting function used for the ground state of the
hydrogen-ion molecule is ® = ¢(1), where ¢ is the
molecular orbital built up as a linear combination of
1s atomic orbitals (LCAQO) centred on each atom. The
initial value of the orbital exponent of each atomic
orbital was set to 1.0.

All the local values of the starting function were
multiplied by the same constant in order to avoid very
small values. The local values of the correction and the
resulting functions obtained were multiplied by that

z
electron

LN

o Tb

i r

! . @ nucleus b

' Ta 9/

' y

< | ® nucleus a

Fig. 1. Cartesian system of coordinates for the hydrogen-ion
molecule
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same factor but the predicted local energies were not
affected.

The Cartesian system of coordinates is centred at the
midpoint of the bond (Fig. 1), which lies on the z-axis.
The position of the electron will be specified by its
confocal elliptic coordinates: A = (r, +r,)/R and p =
(ra — rv)/R, where r, and r, denote the distances of the
electron from each nucleus and R is the bond length. In
some instances, however, the position of the electron will
be identified by its polar coordinates, » and 0; taking into
account symmetry considerations, the value of the latter
will be restricted to the interval from 0° (when the
electron lies on the molecular axis) to 90° (when the
electron lies on the line perpendicular to the bond at its
midpoint). (The other polar angle is always kept con-
stant at a value of 0°.)

Preliminary calculations were carried out in order to
locate a region in the ECS in which the absolute values
of the starting function are small, with the expectation
that the absolute value of the correction function, and
consequently of the possible error, will also be small. A
simple calculation, not requiring the solution of the
SRE, suggested that the interval 10.0 < r < 20.0 bohr
would be appropriate.

Calculations were then performed for three sampling
regions, with that r interval and 0 = 0,45, and 90°, re-
spectively. With Ar = 1.0 bohr, each calculation yielded
11 local energies, which were used for the evaluation of
the corresponding sample mean energy and its standard
deviation. The results presented in Table 1, which show
a quasiconstancy of the SR local electronic energies,
were obtained at the equilibrium bond length, with the
exact energy as an input. The values for the starting
LCAO function are also presented in Table 1 in order to
show the difference in the behaviour of the LCAO and
SR energies. The quasiconstancy of the local SR energies
suggests that the » interval is appropriate; this observa-
tion is confirmed by similar results obtained for the three

will still be possible to observe the improvement intro-
duced by the SR formulation. In the present case that
improvement is evident from the values for the standard
deviations of both the LCAO and the SR values.
Several extended sampling regions, related to the ones
described earlier but with consideration of the complete
0 interval (from 0 to 90°), were considered next. The
calculations were again performed for the equilibrium
bond length and with the same input energy as earlier.
As seen in Table 2, the region covering the interval
10 < r < 23 bohr seems to be the most appropriate, as it
leads to the sample mean closest to the input energy;
this conclusion is confirmed by results presented in
Tables 3, 4, 5, 6, and 7. (In a predictive calculation,

Table 2. Results for various sampling regions. The values of r are
in bohr. The angle 0 is varied from 0 to 90°, with a constant
increment of 1°

r interval Number Electronic energy
of points

Mean value Standard

deviation
6-24 16,470 —1.09631 0.01641
8-24 14,650 —-1.10155 0.00402
1024 12,831 —-1.10241 0.00085
10-23 11,921 —-1.10261 0.00036
10-22 11,011 —-1.10269 0.00019
10-20 9,191 —-1.10276 0.00013
10-18 7,371 -1.10279 0.00012
10-16 5,551 -1.10283 0.00012

Table 3. Local values of the ratio of the predicted function over an
accurate function. The electron is found at a distance of 6.0 bohr
from the internuclear axis in all cases. The predicted function was
multiplied by a constant such that it yields a value of 1 for the first
entry. See Ref. [5] for details of the accurate function

. : A u Ratio A u Ratio

sample mean energies. The quasiconstancy of the local

SR energies, together with the size of the region, are the  6.08 0.00 1.000 6.68 0.42 0.924

decisive factors in the selection of the appropriate 6.1l 0.09 0.999 6.98 0.50 0.899

sampling region. It might be possible to find a small 617 0.17 0.986 137 0.57 0.877

sampling region in which even the local energies of the 232 ggg 8328 ;2; 8?‘11 822;

starting function would show a quasiconstancy, but it i i ' i ' i

Table 1. Predicted local elec-

tronic energies at the points of 0=0 0=45 0=190

three sampling regions. The

distance, E ofgthegelectron from LCAO SR LCAO SR LCAO SR

the centre of coordinates is

given in bohr and the angle 10 —-0.59332 -1.10315 —-0.59596 -1.10312 —-0.59950 —1.10310

0 in degree. See the text for 11 —0.58532 -1.10297 —0.58755 —-1.10296 —0.59054 —1.10294

details 12 —-0.57859 —1.10286 —-0.58050 —1.10285 —0.58305 —1.10284
13 —0.57285 -1.10279 —-0.57449 -1.10279 —0.57670 —1.10278
14 -0.56789 -1.10275 -0.56933 —1.10274 -0.57125 -1.10274
15 -0.56356 -1.10272 —0.56483 —1.10271 —0.56652 —1.10271
16 —-0.55976 -1.10270 —0.56088 —1.10269 —0.56238 —1.10269
17 —0.55638 —1.10268 —-0.55739 —1.10267 —0.55872 —1.10268
18 —-0.55337 -1.10266 —0.55427 —1.10266 —0.55547 —1.10265
19 -0.55066 -1.10264 —-0.55148 —1.10263 —0.55256 —1.10262
20 —0.54822 -1.10259 —-0.54896 —1.10258 —0.54994 —1.10256
Mean -0.56636 -1.10277 -0.56778 —1.10276 —0.56969 -1.10276
Deviation 0.01406 0.00016 0.01465 0.00015 0.01544 0.00015




Table 4. Dependence of the sample mean energy on the orbital
exponent. All the results were obtained for a sampling region
defined by 10.0 < r» < 23.0 bohr and 0.0 < 6 <90.0°. See the text
for additional details
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Table 6. Predicted total energies for different bond lengths. All the
results were obtained for a sampling region defined by
10.0 < <23.0 bohr and 0 < 60 <90°. See Ref. [4] for the exact
energies

Orbital Number SR LCAO R Predicted Exact R Predicted Exact
exponent of points
Energy Standard Energy Standard 1.0 —0.45157 —0.45178 32 -0.57086 —-0.57074
deviation deviation 1.2 —0.52648 —0.52897 34  —-0.56432 —0.56408
1.4 —0.56813 —0.56998 3.6  —0.55787 -0.55771
0.90 11,921 —1.10272 0.00014  -0.47414 0.01666 1.6 —0.59085 ~0.59093 3.8 —0.55189 —0.55170
0.95 11,921 —1.10269 0.00019  —-0.51704 0.01581 1.8 —0.60020 —0.60025 4.0 —0.54628 —0.54608
1.00 11,921 —1.10261 0.00036  —0.56244 0.01496 2.0 ~0.60261 —0.60263 42  —0.54113 —0.54090
1.05 11,921 —1.10242 0.00083  —0.61033 0.01410 22 —0.60084 —0.60083 4.4  —0.53639 —0.53615
1.10 11,686 —1.10214 0.00152  -0.66106 0.01317 24 —0.59658 —0.59654 46 —0.53209 —0.53183
1.15 10,749 —1.10225 0.00124  -0.71528 0.01193 2.6 —0.59089 —0.59083 4.8 —0.52820 ~0.52793
1.20 9,873 —1.10235 0.00100  —0.77180 0.01074 2.8 —0.58443 —0.58435 5.0 —=0.52471 —0.52442
1.25 9,035 —1.10245 0.00079  —0.83065 0.00960 3.0 -0.57766 -0.57756  10.0 -0.50141 —0.50058
1.30 8,220 -1.10254 0.00059  -0.89185 0.00851
1.35 7,399 -1.10262 0.00042  —-0.95542 0.00747
1.40 6,493 —1.10271 0.00027 —1.02145 0.00648 . . . . . .
1.45 5.019 110282 0.00015 Z1.09048  0.00545 Table 7. Electronic energies obtained for different input energies
1.4815 4,935 —1.10281 0.00015  —1.13416 0.00511 . .
1.50 5217 -1.10278 0.00019 -1.15982 0.00507 LoPut Predicted Input Predicted
energy energy energy energy
-0.90 —-0.90009 -1.10 —-1.09998
Table 5. Local values of the kinetic energy contribution of the -1.00 —1.00003 —-1.10263 -1.10261
starting function to the electronic energy -1.05 —1.05001 -1.15 —1.14996
-1.06 —-1.06000 -1.20 —-1.19993

Orbital Starting Contribution  Energy
exponent function

1.00 0.00487 —-0.9036166 -1.10310
1.05 0.00317 —-0.9036215 -1.10310
1.10 0.00206 —-0.9036214 -1.10310
1.15 0.00133 —-0.9036223 -1.10311
1.20 0.00086 —-0.9036223 -1.10311
1.25 0.00055 —-0.9036222 -1.10311
1.30 0.00035 —-0.9036225 -1.10311
1.35 0.00023 —-0.9036225 -1.10311
1.40 0.00014 —-0.9036224 -1.10311
1.45 0.00009 —-0.9036224 -1.10311
1.50 0.00006 —-0.9036223 -1.10311

different energies should be tested but this step was
omitted because at this moment we are determining
whether the SR formulation works as expected.)

The local values, at some chosen points of that
sampling region, for the ratio Wsr/Wacc of the predicted
SR function over the accurate function of Weinhold and
Chinen [5] are shown in Table 3. For this comparison all
the values of the predicted function were multiplied by
the same constant in order to show more clearly the
similarity in the behaviour of both functions; the value
of the constant is the one that brings into concordance
the values of the functions at the first point.

The results obtained at the equilibrium bond length
and using the exact energy as an input when varying the
orbital exponents of the two atomic orbitals are collected
in Table 4. Although the same sampling region is used in
all cases, the number of points at which the calculation is
successful decreases as the orbital exponent is increased:
the orbitals become more and more contracted as one
progresses through the table and the calculation fails
because the values of the starting function become ex-
tremely small towards the tail of the » interval. The in-
teresting point in this table is the quasiconstancy of the

mean SR energy compared with the strong variation in
the mean LCAO energy. This is the result expected from
the SR formulation. For completeness, the result ob-
tained for the value 1.4815 of the orbital exponent is in-
cluded. This is the optimum value obtained by Weinhold
and Chinen [5], which yields a total energy of —0.60262
hartree, while the SR value is —0.60281 hartree.

Another interesting point to be mentioned in con-
nection with the previously described calculations is the
adjustment of the correction function to the new situa-
tion produced by a change in the orbital exponents. As
an example, the local values obtained at » = 10.0 bohr
and 0 = 90° for the starting function, its contribution to
the kinetic energy, and the predicted electronic energy
are presented in Table 5. Before commenting on those
values, it is appropriate to mention that, although the
expectation value of the kinetic energy (as obtained in a
variational calculation) must be positive, the local values
of the kinetic energy may be either positive or negative.
As observed in this table, the starting function changes
considerably as the orbital exponents are increased;
however, the kinetic energy contribution to the elec-
tronic energy remains constant to five significant figures.
This result indicates that the correction function has also
changed appropriately, so the kinetic energy contribu-
tions of both functions remain unchanged, taking into
account that, to five significant figures, the predicted
local electronic energy remains constant.

It remains to test whether the sampling region is ap-
propriate for different bond lengths. The confirmation
may be found first in the results presented in Table 6,
obtained using as an input at each bond length the
corresponding exact energy [4]. In this table one can
observe the excellent agreement between the mean SR
energy and the exact energy (i.e., the input energy). In
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addition, the hypothesis that the SR function reproduces
the accurate function was tested using the sample mean
of the ratio of the predicted SR function over the ac-
curate function of Weinhold and Chinen [5], Wsgr /Wacc-
The results (not presented here for simplicity) for the
standard deviation and the confidence interval (evalu-
ated at a 99% level of confidence, using Student’s [6]
formulation) for the mean confirm the hypothesis for all
the bond lengths considered. (For simplicity in the
comparison of the results, the sample mean of the ratio
obtained at each bond length was multiplied by an
appropriate factor in order to make it equal to 1.0, with
the corresponding standard deviations and confidence
intervals modified appropriately.)

An interesting point to be mentioned in connection
with Table 6 is the fact that SR calculations will predict
the correct dissociation behaviour while density func-
tional theory calculations fail in that regard for one-
electron molecular systems, as discussed recently [7].

All the preceding calculations were performed using
as inputs the correct energies and now we proceed with a
predictive calculation. Calculations were performed for
the complete sampling region (with 11921 points), with
input energies ranging from —0.9 to —1.2 hartree, and
the corresponding results are presented in Table 7. It
may be observed in this table that concordance between
the input energy and the sample mean is obtained for
E; = —1.06 hartree. The standard deviation for the mean
energy is 0.00034 and the mean ratio of the predicted
function over the accurate function of Weinhold and
Chinen [5] is 1.0 £0.02183 (at a 99% level of confi-
dence). The error with respect to the exact energy is
3.87%.

On the other hand, the mean energy for the starting
function is —0.56244 hartree, with a standard deviation
of 0.01496 and an error with respect to the correct
energy of 49.0%, showing clearly the improvement
introduced by the SR formulation.

4 Conclusions

The numerical evidence presented indicates that the
appropriate sampling region to be used in SR calcula-
tions should be one in which the starting function has
small local values, which means working in its tail
region. The characteristic to be observed in an appro-
priate sampling region is a quasiconstancy of the local
SR energies, in contrast to the variation of the local
energies of the starting function. This difference in
behaviour will provide clear indication of the improve-
ment introduced by the SR formulation.

The acceptance of a mean energy as an estimate of the
correct energy should be based on its standard deviation,
with the added condition that the input energy should lie
within (or close enough to) the confidence interval of the
mean energy.
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